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ABSTRACT

The spectral domain analysis is applied to deriving dispersion characteristics of the dominant and higher

order modes in the fin-line structures.
technique as well as other data.

Introduction

The fin-line structure is a special printed trans-
mission line developed for millimeter wave I. C. devel-—

. 1
oped by Meler[ ]. Propagation characteristics of the
fin-line have been investigated by a number of workers

[2] (3]

such as Hofmann and Hoefer In the former, two
types of infinite summations appear in the numerical
process and the truncation of these summations need to
be done carefully in such a way that no relative con-
vergence problem would arise. On the other hand, some
engineering approximations are involved in the work in
[3]. The present paper describes an application, to
the fin-line structure, of the spectral domain techni-
que developed for analysis of various printed trans-

mission lines for microwave integrated circuits[h’B].
The main features of the present work are: (1) Accu-
racy of the numerical solutions obtained by the spec-
tral domain method is checked against the data obtained
by the modified version of the original spectral domain
method. (2) 1In addition, we obtained dispersion
curves for higher order modes. In practical applica-
tions, the knowledge of higher order modes is important
because often it is necessary to find the frequency
region in which the single mode operation is possible.

Theory

Since the details of the spectral domain method
itself have been reported in [L] and [5], only the key
steps will be given in the paper. The modified method
to be used for accuracy check has recently been used

for higher order mode analysis of microstrip lines 6].
The significance of the modifications will be pointed
out in this paper.

Although the methods are applicable to other
types of fin-line structures, we will formulate the
problem for the bilateral fin-line, the cross-section
of which is shown in Fig. 1 (a). Because of the sym-
metry, we only need to consider one-half of the struc-
ture given in Fig. 1 (b).

Since the modal field in the fin-line is of hybrid
type, the fields in Regions 1 (dielectric) and 2 (air)
can be derived from
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where 1 = 1,2 signifies the region, ki is the wave num-

ber in Region i and B is the propagation constant of
the mode in the z direction. The time and z depen~-
dence of the field exp(jwt-jBz) is omitted throughout
the paper.

Numerical results are compared with those by a modified spectral domain

In the spectral domain approach, the potentials ¢i
and wi as well as all the field quantities are Fourier

transformed via
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where kn = %E for the dominant and all odd modes and

kn = (n - %) m/b for the even modes. Because of the

boundary conditions at y = 0 and a

%l(n,y) = Az cosh v;v, $2(n,y) = Bﬁ sinh y,(a - y)
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and ko is the free space wave number.
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We will now apply

the interface conditions at y = d to the appropriate

field components. When this is done, the unknown coef-
. h .. .

ficients Ai, Ag, Bﬁ and Bn are eliminated and we obtain

two coupled algebraic equations
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are all known, and ﬁx’ Ez and JX, Jz are Fourier trans-

forms of unknown tangential electric field in the gap
(y = d, |x|] < s) and unknown current components on the
fins (y = d, s < le < b). Up to this stage the method
of analysis is exact. 1In the following we present a
solution based on the Galerkin's method.

To this end, the unknown aperture fields %x and

Yy s
Ez are expanded in terms of known basis functions
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n
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where the basis functions Ei and nj are Fourier trans-
forms of Ei(x) and n,(x) which are chosen to be zero
except for lxl < s.

Now (9) and (10) are substituted into (4) and (5)
and the inner products of the resulting equations with
each of Ei and %j are obtained., The result is the

homogeneous matrix equation for unknown ¢ and dj.
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Equating the determinant of the coefficient matrix
associated with (11) and (12) to zero, we obtain the
eigenvalue equation and its solution gives the propa-
gation constant R.

One of the features of the spectral domain method
is that accurate solutions result even if we use an
extremely small size matrix such as M = N = 1. This is
because qualitative natures such as the edge condition
of the aperture electric field can be incorporated in
the choice of basis functions. 1In the present case we

have set M = N = 1 and chosen %1 and %l as the Fourier

transforms of El = s/ /s2 - x2 and ny = x s2 - x2

(see Fig. 2). Note that %l and ﬁl are given analyti-
cally.

Modification Of Spectral Domain Method

Instead of checking the accuracy of the numerical
solution by increasing the matrix size, we computed
the propagation constant by use of the modified spec-
tral domain method, which is a combination of the point
matching and spectral domain method. 1In the modified
method, the aperture electric fields are expressed in
terms of trains of rectangular pulses with unknown
amplitudes. For instance
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where Gi(x) =1 for (i - 1)Ax < x < iAx, Ax = 2s/M and

zero elsewhere (see Fig. 2).

In the conventional point matching method, (13)
and (14) are substituted into integral equations which
are then discretized in observation space. We will
not follow this approach. Instead we take Fourier
transforms of (13) and (14), and then they are substi-
tuted into the algebraic equations (11) and (12) and
proceed in the manner same as the spectral domain
method. This modification has the following features:

(1) It is numerically less advantageous than the ori-
ginal spectral domain method, because it requires
inherently larger size matrix.

(2) Edge conditions cannot be directly incorporated
in the basis function.

(3) However, the new method is more flexible and the
coefficients Ei and Eﬁ are adjusted automatically to

represent the aperture distributions. In the original
method, the qualitative nature of the aperture field is
fixed once the basis functions are selected.

Numerical Results

Dispersion characteristics of a bilateral fin-line
have been computed by the spectral domain method. The
results are plotted in Figs. 3 and 4. Note that the
size of the shield case (a and b) coincides with that
of the WR28 waveguide for 26.5 ~40 GHz operation. The
modified spectral domain method has been used to check
the accuracy of the spectral domain data at several
points on the graphs. Agreement seems quite satisfac-
tory. The results also agree favorably with other
available data.

It is clearly seen that the fin-line mode is not
quasi~TEM, but rather it resembles that of the ridged

waveguide as pointed out earlier{l’B].

In addition to the dominant mode, we found the
first odd higher order mode. The modified spectral
domain method also confirmed the existence of the
higher order mode as seen in Figs. 3 and 4.

Conclusions

We presented solutions for dispersion characteris-
tics of the fin-line, based on the spectral domain
method and its modification. The accuracy of the solu-
tions is checked by comparing the results by the two
methods. The results for the higher order mode are
also provided. Information such as the cutoff fre-
quency of the higher order mode is believed useful in
practice,
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Fig. 3 Dispersion characteristics of fin-line modes;
spectral domain method, & modified

method.
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Fig. 4 Dispersion characteristics of fin~line modes;
spectral domain method, A modified
method.



