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ABSTRACT

The spectral domain analysis is applied to deriving dispersion characteristics of the dominant and higher

order modes in the fin–line structures. Numerical results are compared with those by a modified spectral domain
technique as well as other data.

Introduction

The fin–line structure is a special printed trans-

mission line developed for millimeter wave I. C. devel–

oped by Meier[l] . Propagation characteristics of the
fin–line have been investigated by a number of workers

such as Hofmann
[2]

and Hoefer[3]. Intheformer, two
types of infinite summations appear in the numerical
process and the truncation of these summations need to

be done carefully in such a way that no relative con–
vergence problem would arise. On the other hand, some
engineering approximations are involved in the work in

[3]. The presentpaper describes an application, to
the fin–line structure, of the spectral domain techni–

que developed for analysis of various printed trans-
[k,5]

mission lines for microwave integrated circuits

The main features of the present work are: (1) Acc;-

racy of the numerical solutions obtained by the spec–
tral domain method is checked against the data obtained
by the modified version of the original spectral domain
method. (2) In addition, we obtained dispersion
curves for higher order modes. In practical applica-
tions, the knowledge of higher order modes is important
because often it is necessary to find the frequency

region in which the single mode operation is possible.

Theory

Since the details of the spectral domain method
itself have been reported in [b] and [5]> only the key

steps will be given in the paper. The modified method
to be used for accuracy check has recently been used

[6]
for higher order mode analysis of microstrip lines .
The significance of the modifications will be pointed
out in this paper.

Although the methods are applicable to other
types of fin-line structures, we will formulate the
problem for the bilateral fin-line, the cross-section

of which is shown in Fig. 1 (a). Because of the sym-
metry, we only need to consider one-half of the struc-

ture given in Fig. 1 (b).

Since the modal field in the fin-line is of hybrid

type, the fields in Regions 1 (dielectric) and 2 (air)
can be derived from
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k.z - 6L
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zi 6
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where i = 1,2 signifies the region, ki is the wave num-

ber in Region i and ~ is the propagation constant of
the mode in the z direction. The time and z depen-
dence of the field exp(jwt-jf3z) is omitted throughout
the paper.

In the spectral domain approach, the potentials $i

and $i as well as all the field quantities are Fourier

transformed via

~i(n, y) = <~ $i(X, Y) exp(j;nx)dx (3)

.
b for the dominant and all odd modes andwhere k = =

n
kn = (n – ~) ~/b for the even modes. Because of the

boundary conditions at y = O and a

yl(n,y) ‘Aecoshyly, t2(n,y) ‘B~sinhy2(a - y)

tl(n,y) =A: sinh yly,
n

t2(n,y) = B: coshy2(a - y)

and k is the free space wave number.
0

We will now apply

the interface conditions at y = d to the appropriate
field components. When this is done, the unknown coef-

ficients A:, A!, Be
h

and Bn are eliminated and we obtain
n

two coupled algebraic equations

Y=%x+ YXZ2Z = 3X

Yzx%x + Yzz%z= 3Z

where
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(4)

(5)

(6)

(7)

(8)

h=a-d

are all known, and %x, $Z and 3X, ?Z are Fourier trans-

forms of unknown tangential electric field in the gap

(Y = d, 1x1 < S) and unknO~ current components on the
fins (y = d, s < 1X1 <b). Up to this stage the method
of analysis is exact. In the following we present a
solution based on the Galerkin’s method.

To this end, the unknown aperture fields ix and
%
Ez are expanded in terms of known basis functions

M
ix(in) = E Ci 2i(in)

i=l
(9)
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&z(in)= E dj ;j(iin)
j=l

(10)

where the basis functions ‘?i and ~. are Fourier trans-
3

forms of Ci(x) and rIj(X) which are chosen to be zero

except for [x] < s.

Now (9) and (10) are substituted into (4) and (5)
and the inner products of the resulting equations with

each of ? and ~.
i

are obtained. The result is the
1

homogeneous matr;x equation for unknown c and d..
i J

M N
ci+ZKx?d. =O

i~l ‘n PJ 3
p=l,. . .,M (11)

j=l

M ii
ZKzXci+XKz?d. =0 P=l,. . .,N (12)

i=l “ j =1 w J

Equating the determinant of the coefficient matrix

associated with (11) and (12) to zero, we obtain the

eigenvalue equation and its solution gives the propa-

gation constant B.

One of the features of the spectral domain method
is that accurate solutions result even if we use an

extremely small size matrix such as M = N = 1. This is
because qualitative natures such as the edge condition
of the aperture electric field can be incorporated in
the choice of basis functions. In the present case we

have set M = N = 1 and chosen ~1 and ~ , as the Fourier

transforms of ~ , = sl~a:d ~, = XJ=

(see Fig. 2). Note that ‘&l and ‘~1 are given analyti-

cally.

Modification Of Spectral Domain Method

Instead of checking the accuracy of the numerical
solution by increasing the matrix size, we computed
the propagation constant by use of the modified spec-
tral domain method, which is a combination of the point

matching and spectral domain method. In the modified
method, the aperture electric fields are expressed in
terms of trains of rectangular pulses with unknown
amplitudes. For instance

M
Ex(x) = Z ;i Gi(x)

i=l
(13)

(14)

where Gi(x) = 1 for (i - l)Ax < x < iAx, AX = 2s/M and

zero elsewhere (see Fig. 2).

In the conventional point matching method, (13)
and (14) are substituted into integral equations which
are then discretized in observation space. We will
not follow this approach. Instead we take Fourier
transforms of (13) and (14), and then they are substi–

tuted into the algebraic equations (11) and (12) and

proceed in the manner same as the spectral domain
method. This modification has the following features:

(3) However, the new method is more flexible and the

coefficients Z. and ~j are adjusted automatically to
1

represent the aperture distributions. In the original
method, the qualitative nature of the aperture field is
fixed once the basis functions are selected.

Numerical Results

Dispersion characteristic of a bilateral fin-line

have been computed by the spectral domain method. The

results are plotted in Figs. 3 and 4. Note that the

size of the shield caae (a and b) coincides with that
of the WR28 waveguide for 26.5 *4O GHz operation. The
modified spectral domain method has been used to check

the accuracy of the spectral domain data at several
points on the graphs. Agreement seems quite satisfac–
tory. The results also agree favorably with other
available data.

It is clearly seen that the fin-line mode is not
quasi-TEM, but rather it resembles that c,f the ridged

[1,31
waveguide as pointed out earlier ,

In addition to the dominant mode, we found the

firat odd higher order mode. The modified spectral

domsin method also confirmed the existence of the

higher order mode as seen in Figs. 3 and 4.

Conclusions

We presented solutions for dispersion characteris–

tics of the fin-line, based on the spectral domain
method and its modification. The accuracy of the solu-
tions is checked by comparing the results by the two
methods. The results for the higher order mode are

also provided. Information such as the cutoff fre-

quency of the higher order mode is believed useful in

practice.
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(1) It is numerically less advantageous than the ori-
ginal spectral domain method, because it requires
inherently larger size matrix.
(2) Edge conditions cannot be directly incorporated
in the basis function.
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Fig. 1 Fin-line structure, (a) cross-section of the

bilateral fin-line, (b) equivalent structure.
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Dispersion characteristics of fin-line modes;
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F-ig. 4 Dispersion characteristics of fin-line modes;

spectral domain method, A modified
method.

‘Ax ‘

Eig. 2 Basis functions.

346


